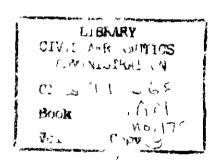
AN ANALYSIS OF THE CANDLEPOWER DISTRIBUTION REQUIREMENTS OF RUNWAY LIGHTS

By
Marcus S Gilbert and H. J Cory Pearson
Airport Division

Technical Development Report No 178

CIVIL AERONAUTICS ADMINISTRATION
TECHNICAL DEVELOPMENT AND
EVALUATION CENTER
INDIANAPOLIS, INDIANA
June 1952

1351


U S DEPARTMENT OF COMMERCE

Charles Sawyer, Secretary

CIVIL AERONAUTICS ADMINISTRATION

C F Horne. Administrator

D M Stuart, Director, Technical Development and Evaluation Center

This is a technical information report and does not necessarily represent CAA policy in all respects

TABLE OF CONTENTS

			r-age
Summary .			1
Introduction			1
Airplane Paths During Approach, Landing, and Take-off Operations	-	_	1
Assumptions and Calculations .	4		4
Discussion			8
Conclusions			13

Manuscript received April 1952

AN ANALYSIS OF THE CANDLEPOWER DISTRIBUTION REQUIREMENTS OF RUNWAY LIGHTS

SUMMARY

This report discusses the runway light candlepower distribution based on the functional requirements for adequate guidance of various types of commercial aircraft during circling, approaching, landing, taxiing, and take-off operations conducted in accordance with Civil Air Regulations

Individual aircraft characteristics were considered in establishing positional limits between which different types of aircraft might be expected to operate during various maneuvers. After consultation with a number of pilots, assumptions were made concerning which lights a pilot should be able to see for guidance during each operation. The directions and distances between the lights and the successive aircraft positions were then calculated and tabulated

Critical atmospheric transmissivities were assumed in conformity with existing regulations governing operations under various weather minimums, and the corresponding candlepower requirements were then determined. These candlepower requirements were then evaluated in order to determine their practicability and in order to determine whether intensities needed for some airplane positions in space would cause glare at other positions

Finally, acceptable candlepower (cp) values were plotted as isocandle curves which can serve as a basis for performance specifications for improved runway lights

INTRODUCTION

The need for runway lights to outline runways as an aid to air navigation was recognized many years ago. Many types of lights embodying the ideas of different designers have been developed. Those in the high-intensity category are generally classified on the basis of their candlepower distribution as wide beam, narrow beam, or movable beam units, and considerable uncertainty and confusion exist concerning their relative effectiveness and proper application.

The essential function of the runway lights is to mark the position and limits of the runway. In order to be useful these lights must be made visible to the prospective user at various stages of landing and take-off operations. It would appear then that a logical approach to the problem of runway lighting would be to study aircraft operations.

with a view to establishing approximately the paths described by aircraft during various maneuvers and to calculate the candlepower distribution required, in order that pilots can see the necessary lights from aircraft following those paths.

Since operations and procedures are more or less standard, being governed by regulations as well as by aircraft characteristics and limitations, it is not an impossible task to determine the general direction and distance from any runway light to an airplane during the course of any specific operational procedure. The required candle-power of the light in the direction of the pilot can then be determined mathematically.

In this study use was made of the characteristics of typical commercial airplanes whose maneuvering paths lie farther out from the runway, whose turning radii are greater, and whose demands on the lights are therefore more critical than those of smaller aircraft. Any lights designed for commercial airplanes should be satisfactory for most of their military counterparts and for smaller aircraft.

The authors wish to emphasize that this analysis has involved consideration of certain intangible factors which cannot be defined exactly. In dealing with such factors an attempt was made to arrive at reasonable assumptions through discussion with qualified persons. The study is intended to serve as a guide in the development and design of new lighting units.

AIRPLANE PATHS DURING APPROACH, LANDING, AND TAKE-OFF OPERATIONS

Runway lights are used during approaches and landings to provide visual guidance to a pilot for a period which begins after he has started his approach and ends as he leaves the runway after completing his landing. The area within which guidance is required depends largely upon the type of approach he is making. The runway light intensity required depends upon the distance from which the lights must be seen and upon the visibility condition prevailing. Runway lights are also used during take-offs while the airplane is on or above the runway.

The types of approaches that may be made under certain limiting visibility conditions are governed by Civil Air Regulations. Minimum operating conditions vary somewhat at different airports chiefly because of

TABLE I
MINIMUMS GOVERNING APPROACHES AND TAKE-OFFS AT INDIANAPOLIS INDIANA*

			Landing Mi Day or N				-Off Minim		Alternate Landing Minimums	
			cling pach**		ght-in oach**		ay or Night	•		
Class of Operator	Type of	Radio	ILS	Radio ILS		Radio	ILS			
Operator	Arrcraft	Range or Automatic Direction Finder		Range (Runway 9) or Automatic Direction Finder (Runway 4)	Runway 4	Range or Automatic Direction Finder	Runways 4 or 22	Other Runways		
Scheduled Air Carrier	DC-3 or Smaller	400-1***	400-1	400-1	200-1/2	300-1	200-1/2	300-1	800-Z	
	CV-240 M-202	500-1 1/2	500-1 1/2	400-1	200-1/2	300-1	200-1/2	300-1	800-2	
	DG-6 DG-4 L-49	500-1 1/2	500-1 1/2	400-I	200-1/2	Runways 4 or 22 200-1/2 Others 300-1	200-1/2	300-1	800-2	
All Others Except Mil- itary and Users to Whom the CAA has Specifical- ly Author- ized Lower Minimums	Aircraft Having Stall Speeds Above 75 mph Aircraft Having Stall Speeds Below	500~1 1/2	500-1 1/2	500-1	400-3/4	30D-1	300-3/4	300-1	1000-3	
	75 mph	400-1	400-1	500-1	400-3/4	300-1	300-3/4	300-1	1000-3	

NOTES ON TABLE I

*While minimums in this chart apply specifically to operations at Weir Cook Municipal Airport Indianapolis Indiana they are applicable to most other airports where the same terrain and obstruction conditions prevail

**Circling approach minimums (known as regular landing minimums) are authorized when it is necessary to circle or maneuver the aircraft during an approach for landing. Straight-in landing minimums are authorized only when landing can be accomplished straight in from the navigational facility being used to the near end of the runway without exceeding 500 feet per minute rate of descent and without change of direction of more than 30.

***In columns 3 to 10, numbers indicated thus 400-1 means a ceiling of 400 feet and visibility of 1 mile

Sources of information CAA Flight Information Manual, Vol. 5 No. 2 June 1951

differences in obstructions Representative minimums are summarized in Table I which shows those in effect at Weir Cook Airport, Indianapolis, Indiana

It can be seen from Table I that circling approach minimums applicable to commercial aircraft generally vary from 400-and-1 to 500-and-1 1/2. This means from a 400-foot ceiling and 1-mile visibility to a 500-foot ceiling and 1 1/2-mile visibility. Daylight visibilities are reported on the basis of the observed visual range for large solid objects. Night visibilities are based on observations of a 25-candlepower lamp. The most commonly applied minimums for straight-in ILS approaches and landings are 300-and-3/4, although at one specially equipped airport qualified commercial pilots

have been permitted to make instrument approaches and landings with minimums of 100-and-1/4 Straight-in approaches from a radio facility are generally permitted at 400-and-1 Both circling and straight-in approaches are also made under unrestricted visibility conditions Take-off minimums vary generally from 200-and-1/2 to 300-and-1

The several types of approaches mentioned in the regulations do not make identical demands upon the lights. For the circling approach, which may be started from any direction, guidance over a wide area is required from the lights. For the straight-in approach from a radio facility, the horizontal path limits are narrowed since straight-in approaches are permitted

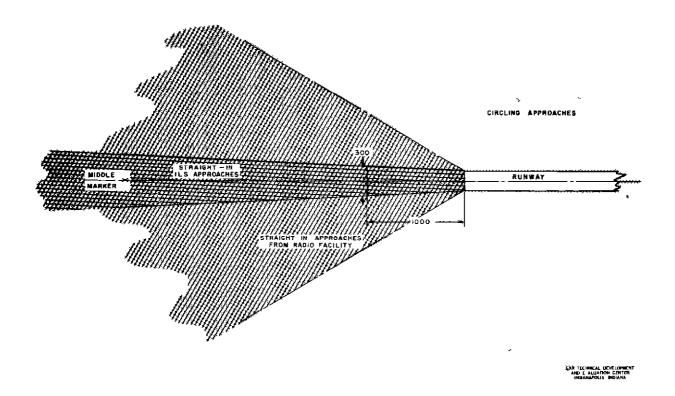


Fig. 1 Plan View of Runway and Approach Showing Directional Guidance Areas Required from Runway Marker Lights

only when the angular difference between the runway direction and a course from the navigation aid to the approach end of the runway is 30° or less. For the straight-in ILS approach the limits are further narrowed to a region relatively close to the localizer course which the pilot is following in his letdown. For this type of approach there are approach lights to guide him before he reaches the area where the limited coverage of the runway lights will be visible. The directional guidance areas to be served by runway lights are shown in Fig. 1.

The Circling Approach

In order to determine distances through which the light must travel to reach the pilot's eye, consideration must be given to the circling procedure before establishing the limits of the possible paths of an approaching airplane. This procedure is required when a pilot first establishes visual contact with the airport from a point not suitable for his final approach. It may also be necessitated by traffic conditions.

During the down-wind leg of the ap-

proach, the altitude of the airplane will be limited by two factors (1) the minimum clearance that must be maintained above the tallest obstructions in the airport vicinity, and (2) the maximum height from which a pilot can descend in comfort and safety. At most airports the minimum height above ground for circling is established at 500 feet A let-down rate of 500 feet per minute may be considered a maximum for aircraft not pressurized, although this rate could be increased in an emergency On this basis, a height of 2,000 feet may be considered a maximum for normal approaches and might be increased to 4,000 feet for emergency conditions

From a series of actual flight measurements conducted by TDEC engineers, it had been previously determined that during the circling approach the maneuvering speed was approximately $16/9~V_{\rm S}$, where $V_{\rm S}$ = stall speed. For the several types of airplanes listed, the values would be approximately those shown in Table II. There are many variables which affect these speeds, but for the purposes of this determination the values

TABLE II
SPEED AND VISIBILITY CHARACTERISTICS OF VARIOUS AIRLINERS

Aircraft		Characteris (mph)		. A	cal Circling Approach 15° Bank)	Minimum Forward Visibility on Ground** (Feel)		
Manufacturer	Model	A p proach	Stall	Selected Speed (mph)	Corresponding Turn Radius (Feet)	Landing	Taxung	
Boeing	377	150	100	175	7600	146	73	
Consolidated- Vultee	Convair 240	115 - 130	91	160	6400	62	59	
Douglas	DC-6	125 - 135	89	160	6400	104	98	
Douglas	DC-4	120 - 135	83	150	5600	152	98	
Douglas	DC-3	95 - 110	69	120	3600	104	331	
Lockheed	Constellation	120 - 135	88	160	6400	155	123	
Martin	202	115 - 130	83	150	5600	69	66	

*These figures were supplied by the respective manufacturers. They will vary under different conditions of altitude loading winds and reserve fuel carried. However, for lighting requirements and estimations these values will be satisfactory.

given are sufficiently accurate

At the end of the down-wind leg, the pilot makes a turn of approximately 180° This turn is so executed that at its completion the airplane will be at a height of approximately 500 feet above the runway level and in position to begin a final approach from a point approximately 3,500 feet distant from the runway end During the downwind leg the pilot maintains the necessary horizontal distance from the runway to permit him to execute the turn properly. This distance is about twice the radius of turn, and is dependent upon the degree of bank and the maneuvering speed These factors are interrelated as indicated by the equation

$$R = \frac{V^2}{g \tan \phi} \tag{1}$$

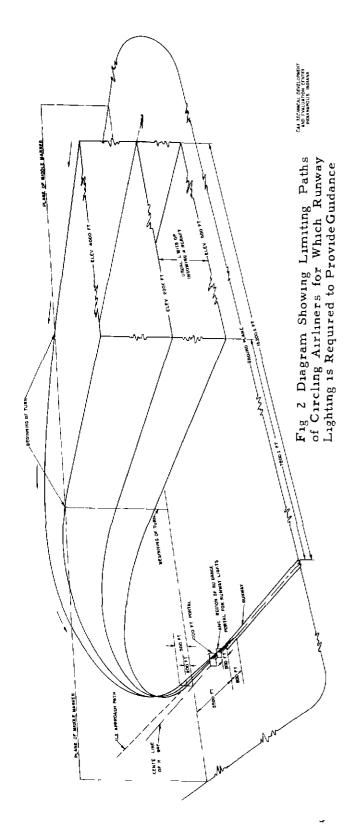
where

R = radius of turn (feet)

V = maneuvering speed prior to landing (feet per second)

g = acceleration of gravity (32.2 feet per second per second)

\$\phi = \text{degree} \text{ of bank} \text{ For turns made by passenger-carrying aircraft, 15° is a normal and comfortable bank.}


Because of their greater speeds the large airplanes require a larger turning radius, and pilots normally execute the down-wind legs at a greater distance from the runway For this reason, Civil Air Regulations require higher minimum visibility conditions for large aircraft

From the data shown in Table II and the application of Equation (1), the theoretical limits of circling paths shown in Fig 2 were determined Figs 3A and 3B show some typical circling approaches plotted from actual field observations under good visibility conditions These are preliminary results from a collision course study now being conducted at this Center as one phase of an investigation concerning the development of cockpit visibility standards results of this investigation will be published in a subsequent report. While there is considerable variation between paths for the same model of airplane, the paths shown are generally consistent with the theoretical computations

ASSUMPTIONS AND CALCULATIONS

Before an optimum candlepower distribution for runway lights can be determined it is necessary to arrive at a practical assumption concerning the number of feet of runway a pilot should be able to see from various points along his path. It is understandable that most pilots might prefer to be able to see all the runway, or all the lights outlining the runway, at all times after starting an approach. Such a requirement would not be realistic, however, because it would involve excessive candlepower for low visibility conditions and would produce glare.

^{**}Some of these figures were obtained from manufacturers and the others from actual measurement at this Center

during certain phases of the landing operation Experience in low visibility operation has also shown that such an ideal situation is not required for safety. A more realistic requirement must be based on a study of the actual needs for each part of the approach rather than on what might be considered desirable.

In arriving at a tentative decision on this point, discussions were held with a group of pilots who were asked to state their opinions about the minimum length of runway necessary to be seen during each part of the approach. The consensus is listed in Table III. The pilots stated that for all operations it is desirable to see the lights on both sides of the runway in order that the runway may be more readily recognized.

It will be noted that for operations under circling minimums, where navigation after the break-through is by visual means, the pilots desired to see a relatively large portion of the runway For the very restricted visibility operations, such as straight-in ILS approaches, the requirements were reduced to 1,000 feet because the pilot is guided by electronic equipment almost to the point of final touchdown For the landing roll, taxiing, and take-off operations it is unnecessary to see large portions of the runway This is because the airplane already is oriented along a definite ground course or is proceeding more slowly than in the approach

Having assumed which lights it is desirable for a pilot to see in order to keep himself properly oriented during the different operations, the next step was to calculate the distances and angles from these lights to the various airplane positions. In making the calculations it was assumed that the glide angle is 2.65°, the touchdown point is 800 feet from the runway end, and the runway width (when necessary to be considered) is 200 feet.

Transmissivities along the slanting paths between the aircraft and the lights were assumed to correspond to the horizontal visibilities given in Table III. For circling approaches, the visibility condition for operation of a given airplane was taken from Table I. No consideration was given to the effect of ceiling height, since circling approaches are permitted only when an aircraft is below the ceiling

After the calculations of angle and distance were made, the candlepower values required to make the lights visible from the maneuvering path were read from nomographs

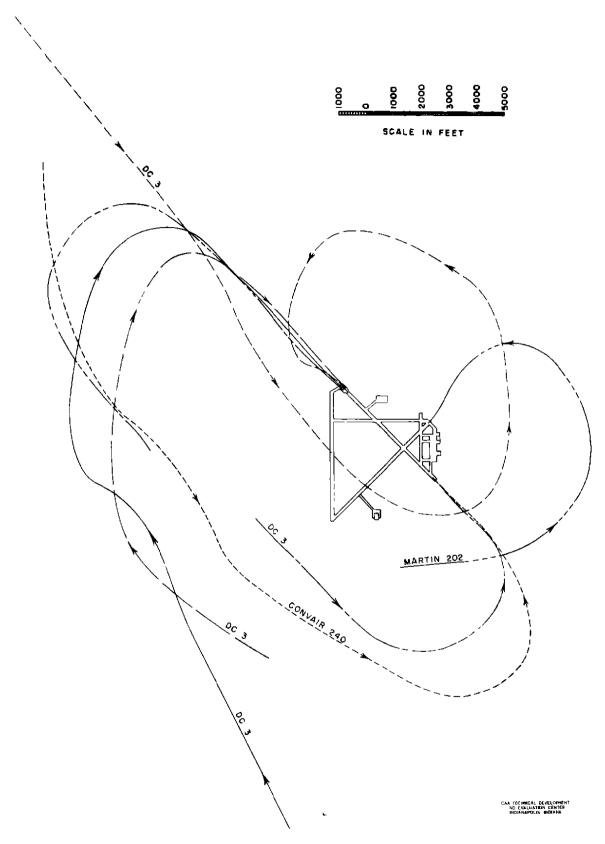


Fig 3A Plan View of Circling Approach Patterns Followed by Various Airliners

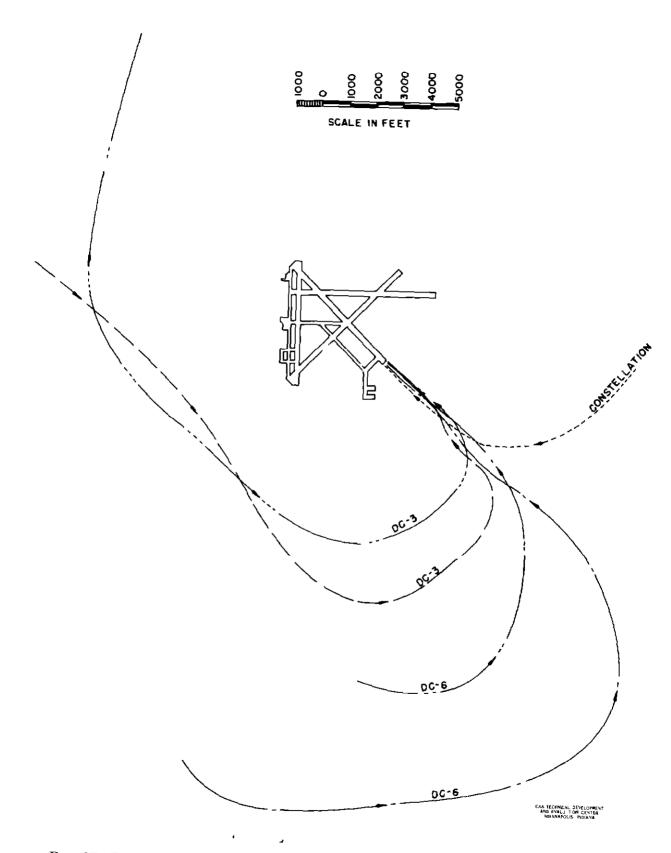


Fig 3B Plan View of Circling Approach Patterns Followed by Various Airliners

TABLE 111
LENGTH OF RUNWAY DESIRABLE FOR PILOTS TO SEE DURING AIRPLANE OPERATIONS UNDER RESTRICTED VISIBILITY

Visibility	Operation	Position of Airplane	Height Above Runway Level (Feet)	Minimum Length of Runway to be Seen (Feet)
Down to 1 Mile	Circling on Path as Near	On Down-Wind Leg	500 to 4000	5000
(Night)	as Possible to Runway	At 90 Point on 350 to 2000		1000
Í	Crossing	Above Runway		
	Runway	1/4-Mile From Either Side of Runway	500 to 4000	3000 In Either
		1/2-Mile From Either Side of Runway		Direction
	Straight-in Approach From Radio Facility	8000 Feet to 10000 Feet Beyond Runway End	400 to 525	200
	Radio Facility	3500 Feet Beyond Runway End	200 to 600	Entire Runway (5000-8000)
Down to 1/4 or 1/2-Mile (Day or Night)	Straight-in ILS Approach	3500 Feet Out — Not More than 300 Feet Off Course	On Glide Path Above Glide Path Below Glide Path	1000
		1000 Feet Out - Not More than 150 Feet Off Course	On Glide Path Above Glide Path	1000
		500 Feet Out - Not More than 125 Feet Off Course	On Glide Path Above Glide Path	1000
Down to 1/4-Mile (Day or Night)	Touchdown Take-Off		On Runway	1000
	Taxung			500

published previously 1 These values, listed in Tables IVa and IVb, were used to plot isocandle curves. The isocandle curves shown in Fig 4 cover the requirements for circling approaches. Figs 5 and 6 show the candlepower requirements for straight-in approaches under selected conditions.

Intensities which are only high enough for threshold visibility from one point in the maneuvering space may be glaring to the same pilot or to other pilots when viewed from some other point in the same direction but at a shorter distance. For example, a light which was barely visible to the pilot on the down-wind leg of his approach might be glaring during the landing roll. While it is possible to vary the intensity of lights to some extent for varying weather conditions, it is not practicable to vary it for different stages of an approach, because several pilots at different points may be using the lights simultaneously.

¹M S Gilbert and H J Cory Pearson, "A Study of the Visibility and Glare Ranges of Slope-Line Approach Lights," CAA Technical Development Report No 150, November 1950, pp 6-7

Calculations of glare ranges for various values of light intensity were based on the assumption that glare can be produced by candlepower values approximately 1,000 times those producing threshold illumination at a Glare diagrams shown in given distance Figs 7 and 8 are based on intensities required for seeing 1,000 feet of runway from the middle marker and from the 1,000-foot portal during a 1/4-mile night visibility condition The glare diagrams in Figs 9 and 10 are based on intensities required for seeing 1,000 feet of runway from the 1,000-foot portal during 1/4- and 1/2-mile day visibility conditions As a result of field tests, all candlepower values of 200 or less were considered to be non-glaring for short-range viewing regardless of the visibility condition

DISCUSSION

A study of the tabulated candlepower data, isocandle curves, and glare diagrams indicates, that the candlepower values required to satisfy the various conditions outlined in Table III are within practical limits

 $^{^2}$ Ibid, pp 5 and 8

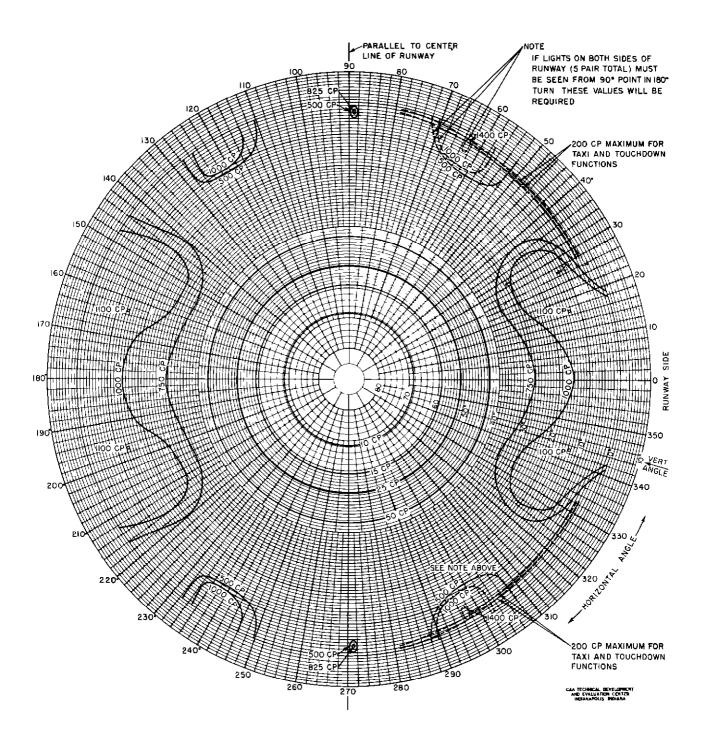


Fig 4 Isocandle Curves Showing Minimum Candlepower Requirements of Runway Lights for Night Operations Under Circling Minimums

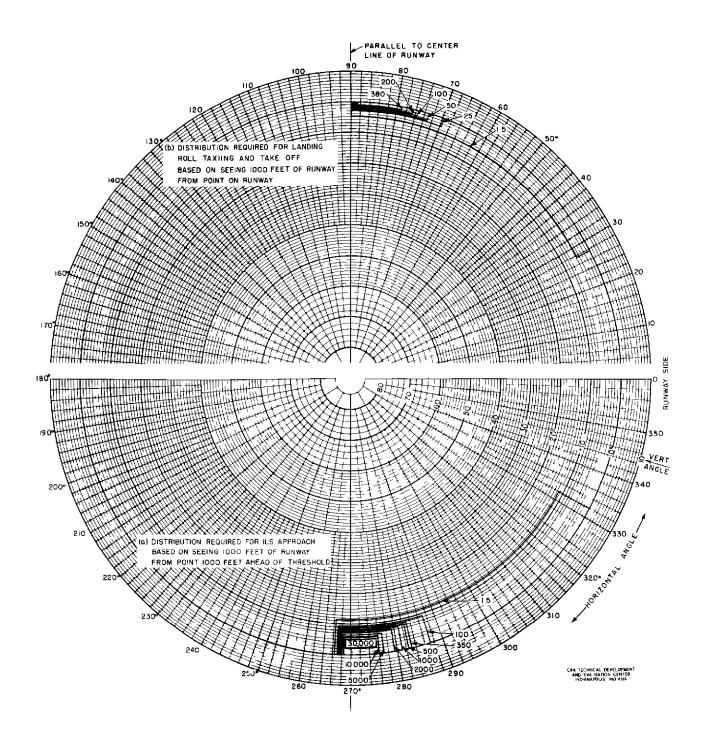


Fig 5 Isocandle Curves Showing Minimum Candlepower Requirements for Day Operations

During 1/4-Mile Visibility Condition

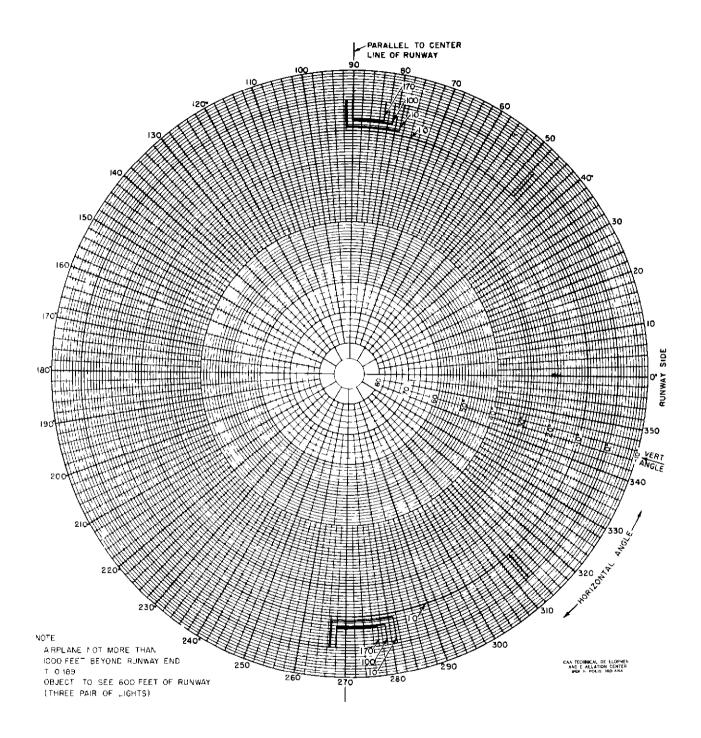


Fig. 6 Isocandle Curves Showing Minimum Candlepower Requirements for Night Operations During 1/4-Mile Visibility Condition

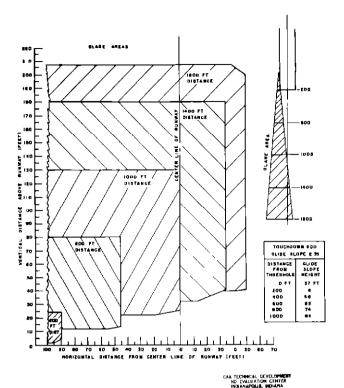


Fig 7 Outlines of Glare Area, at Designated
Distances from Airplane, of a Runway
Light Based on Candlepower Required
to See 1,000 Feet of Runway from
Middle Marker
Visibility 1/4-Mile, Night (25 cp)

with the following exceptions

a To make 8,000 feet of runway visible from the middle marker (3,500 feet out from the runway end) for night visibilities below 1 1/2 miles would require impractical candlepower values which would also produce glare areas

b To make 1,000 feet of runway visible from the middle marker during 1/2-mile day visibility would also require excessively high candlepower values. To make the same length of runway visible from the same point during 1/2-mile night visibility would involve glare at other positions, although the candlepowers would be relatively low and easy to obtain

c To make 1,000 feet of runway visible from a point 1,000 feet beyond the threshold during 1/4-mile night visibility would also result in glare. Reducing to 600 feet the length of runway to be seen would correct this condition.

The requirement that the lights on both sides of the runway should be visible from a given point gives rise to some points of conflict. The difficulty is particularly ap-

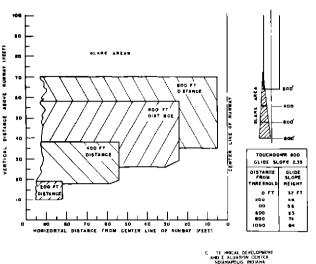


Fig 8 Outlines of Glare Area, at Designated Distances from Airplane, of a Runway Light Based on Candlepower Required to See 1,000 Feet of Runway from the 1,000-Foot Portal.

Visibility 1/4-Mile, Night (25 cp)

parent in the case of the candlepower distribution required by a pilot on the downwind leg of a circling approach. These values are much too high for a taxing pilot who sees the lights at the same angles. If the requirement were modified to make only the lights on the near side of the runway visible to the pilot on the down-wind leg, this difficulty would be eliminated.

In order to cover various situations and visibility conditions, it appears that several candlepower distribution patterns will be required from the runway lights. A distribution throughout a 360° horizontal range and with no high intensity beams, as shown in Fig. 4, will be needed on all runways during night visibility conditions of one mile or more in order to provide guidance during (1) circling approaches, (2) approaches from a radio facility, (3) deceleration after touchdown, (4) taxing, and (5) take-off

For straight-in ILS approaches there will be required from lights in the touchdown area a different pattern consisting of a high intensity beam through relatively narrow limits. In order to maintain a margin of safety for a landing airplane which might be somewhat off course prior to crossing the threshold, the beam spread should be sufficient to cover a portal 300 feet wide at a distance 1,000 feet out from the runway end. The isocandle diagram Fig. 5a, illustrates the minimum candlepower needed for the 1/4-mile visibility condition, the most restricted condition considered in this study.

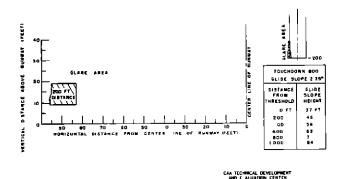


Fig 9 Outlines of Glare Area, at Designated Distances from Airplane, of a Runway Light Based on Candlepower Required to See 1,000 Feet of Runway from the 1,000-Foot Portal Visibility 1/4-Mile, Day

This high intensity beam of 30,000 cp is based on the assumption of a need for seeing 1,000 feet of runway from a point on the 1,000-foot portal

A narrower beam of lower intensity will suffice for the landing roll, taxiing, and take-off during visibility conditions below one mile. See Fig. 5b. The peak of 380 cp in this low intensity beam is based on a requirement for seeing only the 1,000 feet of runway immediately ahead of the pilot after the airplane touches the runway. Should it be considered necessary to extend this latter range of visibility, higher beam candlepower values obviously will be needed. The maximum may be as high as 30,000 cp. should it be necessary for a pilot to see 2,000 feet of runway from the touchdown point.

In the event that it is undesirable or impractical to design a high-intensity lighting unit of sufficient beam width for use in the touchdown zone, narrow beam units with the same maximum candlepower can be used in groups of two or three along the touchdown zones so that the total width of the combined beams will be sufficient to cover the portal

The intentity requirements will be considerably lower for operations at night, when the background brightness is low. See Fig. 6. Lights should be designed on the basis of the intensities required for the most exacting combination of transmissivity and background brightness expected to occur at representative airports. Lower intensities for less exacting conditions may be obtained through intensity control, either manual or automatic. Since intensities up to 200 cp. and be tolerated from the glare standpoint under the best night visibility conditions, it is not

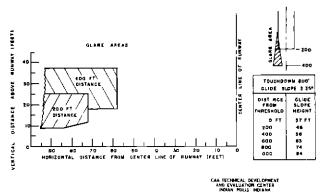


Fig 10 Outlines of Glare Area, at Designated Distances from Airplane, of a Runway Light Based on Candlepower Required to See 1,000 Feet of Runway from the 1,000-Foot Portal.

Visibility 1/2-Mile, Day.

necessary to use values less than this even though minimum requirements indicate use of lower intensities

It may be possible to develop a single type of runway light to combine the distributions required for all or several functions. In any event, there is little doubt that combination or multiple units can be used to achieve the desired distributions. Combining units to meet the candlepower requirements may also help in mitigating glare under certain conditions through use of the most suitable unit of the combination for any specific visibility condition.

CONCLUSIONS

l On the basis of the assumptions set forth in this report the theoretical candle-power distributions needed to meet various requirements and conditions have been established. The following conditions cannot be met with reasonable candlepower requirements without producing glare.

a To see 8,000 feet of runway from the middle marker in visibility conditions less than the 1 1/2-mile night condition

b To see 1,000 feet of runway from the middle marker during the 1/2-mile day or night condition

c To see 1,000 feet of runway from the 1,000-foot portal during 1/4-mile night visibility To see 600 feet of runway without glare would be theoretically possible

2 It is not practical to see lights along both sides of the runway during the down-wind leg of a circling approach under some visibility conditions, because this will introduce glare to pilots of other aircraft already on the runway

3 Three types of candlepower distribution are required for runway lights. The first will cover the requirements for circling and other approaches under visibility conditions down to one mile by day or night. The second will be required for the touchdown zone for straight-in ILS approaches. The third will be required for the runway beyond the touch-

down zone when the visibility is below one mile. It may be necessary to use multiple fixtures in order to meet all conditions

4 Since the distributions developed in this report are based entirely on theoretical analysis, it is recommended that they be given adequate service testing before they are used as a basis for specification requirements

TABLE IVa

MINIMUM CANDLEPOWER REQUIREMENTS OF RUNWAY LIGHTS FOR NIGHT OPERATIONS UNDER CIRCLING MINIMUMS

	rcraft Post quirement		ng on Downwind 2500 Feet of Ri		Path Indicated		
Path — Horizontal Distance			Horizont		Candlepower		
Between Runway Edge and Down-Wind Leg (Feet)	Altitude (Feet)	Vertical Angle (Degrees)	Runway Side (Degrees)	Off Runway Side (Degrees)	1 1/2-Mile Visibility T = 0 881	l-Mile Visibility T = 0 7854	
15200	500 2000 4000 500 2000 4000	1 9 7 5 14 7 1 9 7 5 14 6	0 0 0 86 3514 86 3514 86 3514	180 180 180 1714 1886 1714 1886 1714 1886	1035 1050 1075 1055 1055 1075		
12000	500 2000 4000 500 2000 4000	2 39 9 46 18 4 2 35 9 29 18 2	0 0 0 10 85 349 15 10 85 349 15 10 85 349 15	180 180 180 180 169 15 190 85 169 15 190 85 169 15 190 85	250 250 375 250 260 400		
7200	500 2000 4000 500 2000 4000	3 99 15 54 29 1 3 79 14 84 27 9	0 0 0 17 75 342 25 17 75 342 25 17 75 342 25	180 180 180 180 162 25 197 75 162 25 197 75		280 300 750 325 400 925	
	quirement	-			- (5000 Feet Total)		
15200 15200 15200	500 2000 40 00	1 8 7 2 14 1	16 8 343 2 16 8 343 2 16 8 343 2	163 2 196 8 163 2 196 8 163 2 196 8	1080 1090 1100		
12000 12000 12000	500 2000 4000	2 24 8 81 17 3	20 94 339 06 20 94 339 06 20 94 339 06	159 06 200 94 159 06 200 94 159 06 200 94	375 420 760		
7190 7190 7190	500 2000 4000	3 35 13 20 25 1	32 61 327 39 32 61 327 39 32 61 327 39	147 39 212 61 147 39 212 61 147 39 212 61		1000 1030 1050	

T = Transmissivity

TABLE IVa (Continued)

MINIMUM CANDLEPON ER REQUIREMENTS OF RUNWAY LIGHTS FOR NIGHT OPERATIONS UNDER CIRCLING MINIMUMS

Aircraft Position At 90 Point on 180 Turn
Requirement To See Pair of Lights Listed

			Requir	ement	To S	ee Pair	of Lights	Listed	
Path		Threshold		I	lorizonta			Candlepov	ver
	Altitude (Feet)	To Pair Of Lights (Feet)	Vertical Angle (Degrees)		ay Side (rees)	_	ff y Side rees)	1 1/2-Mile Visibility T = 0 881	I-Mile Visibility T = 0 7854
15200	350	200	1 5			123 8	236 2	925	
	1000		4.2			123 B		925	
	2000		8 4			123 8	236 2	930	
	350	400	15			123 3	236 7	930	
	1000		4.2			123 3	236 7	950	
	2000	ĺ	8 3			123 3		1000	
	350	800] 4			122 5		1050	
	1000		4-1			122 5		1050	
	2000		8 1			122 5	237 5	1100	
	350	200	15	55 5	304 5			930	
	1000		4 2	55 5	304 5			930	
	2000 350	400	8 4 1 5	55 5	304 5			930	
	1000	400	4 2	56 0 56 0	304 0			935	
	2000		8 3	56.0	304 0 304 0			935 935	
	350	800	14	56 9	304 0			1050	
	1000	800	4 1	56 9	303 L			1050	
	2000		8 1	56 9	303 1			1050	
			- 		303 1			-	
12000	350	200	16			1287	231 3	330	l
	1000		4.7	ŀ		1287	231 3	335	1
	350	400	16			128 1		375	
	1000		4.6			128 1		380	
	350	800	16			126 9		560	
	1000		4.5	l		126 9	233 1	570	
	350	200	16	506	309 4			375	
	1000	400	4.6	50 6	309 4			380	
	350 1000	400	16	512	308 8			390 400	
	350	800	4 6 1 6	51 2 52 3	308 8 307 7			580	
	1000	800	45	523	307 7			600	
		<u> </u>							
7200	350	200	2.5			117 0			700
	1000	l	7 1			117 0			700
	350	400	2 4			116 4		1	920
	1000	900	6 9			116 4			925
	350 1000	800	23 67			115 2 115 2			1225 1250
	350	200	2 5	617	298 3	112 2	477 0	1	700
	1000	200	7 1	61 7	298 3				700
	350	400	2 4	62 3	297 7				925
	1000	•••	6 9	62 3	297 7				930
	350	800	2 3	63 6	296 4				1400
	1000		6.6	63 6	296 4				1400

TABLE IVa (Continued)

MINIMUM CANDLEPOWER REQUIREMENTS OF RUNWAY LIGHTS FOR NIGHT OPERATIONS UNDER CIRCLING MINIMUMS

Aircraft Position | Crossing Runway | To See 3000 Feet of Runway in Either | Direction from Various Altitudes

Position of			Horizon	tal Angle	Candle	ower	
Aircraft with Respect to Runway	Altitude (Feet)	Vertical Angle (Degrees)	Runway Side (Degrees)	Off Runway Side (Degrees)	1 1/2-Mile Visibility T = 0 681	1-Mile Visibility T = 0 7854	
Over	2000 87 1 00 4000 88 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 84 3 84 3 84 3 87 1 87 1 87 1 88 1 88 1		1 0 1 0 1 25 1 0 1 0 1 25 1 0 1 0 3 0 1 0 1 0 4 0	1 0 1 0 6 5 1 0 1 0 6 5 1 0 1 25 10 0 1 5 3 5 23 0	
l/4-Mile Distant	500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500	20 8 56 6 71 7 18 2 52 8 69 2 16 8 50 4 67 5 15 4 47 7 64 5 11 8 39 8 59 1 11 3 38 5 57 8 63 1 5 50 8 8 5 30 8	0 0 0 0 33 3 326 7 33 3 326 7 33 3 326 7 52 8 307 2 52 8 307 2 52 8 307 2 52 8 307 2	180 180 180 180 180 142 9 217 1 142 9 217 1 142 9 217 1 123 4 236 6 123 4 236 6 123 4 236 6 123 4 236 6	1 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 5 1 0 1 0 2 5 1 0 1 5 5 0 1 5	1 0 1 0 9 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
l/2-Mile Distant	500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500 2000 4000 500	10 7 37 1 56 5 10 0 35 2 54 7 10 1 35 3 54 8 9 4 33 6 53 0 8 6 31 2 50 4 8 2 29 9 49 0 7 1 26 6 45 0	0 0 0 19 4 340 6 19 4 340 6 19 4 340 6	180 180 180 180 159 3 200 7 159 3 200 7 159 3 200 7 142 9 217 1 142 9 217 1 142 9 217 1 142 9 217 1	1 0 1 0 2 5 1 0 1 0 3 0 1 0 3 0 1 0 3 5 1 0 1 0 4 5 1 0 4 5 1 0 2 5 5 0 2 5	1 0 2 5 15 0 1 0 3 0 17 0 1 5 3 0 20 0 2 0 4 0 25 0 2 7 5 0 3 5 0 3 5 7 0 10 0 45 0	

TABLE IVa (Continued)

MINIMUM CANDLEPOWER REQUIREMENTS OF RUNWAY LIGHTS FOR NIGHT OPERATIONS UNDER CIRCLING MINIMUMS

	.	Aircra Requir		On Glide Path To See First	Pair of Lights		
		Vertical	Horizon	ital Angle	Ca	ndlepower	
Distance Out (Feet)	Altitude (Feet)	Angle (Degrees)		ay Side grees)	l 1/2-Mile Visibility T = 0 881	l-Mile Visibility T = 0 7854	
8000 10500	409 526	2 9 2 8	69 2 270 8 89 4 270 6		200	825	
		Aircrast Posi Requirement		Middle Markei Pairs of Lig	r – 3500 Feet Out hts Listed	L	
200	200 600		88 45 88 9	271 55 271 55	1 0	4 0 4 0	
2400	200	1 9 5 B	88 9 88 9	271 1 271 1 271 1	6 5 7 5	75 0 80 0	
4600	200 600	1 4 4 2	89 2 89 2	270 8 270 8	40 0 45 0	600 0 700 0	
7800	200 600	1 0 3 0	89 4 89 4	270 6 270 6	275 0 280 0	8000 0 8500 0	
	Aircra Requir			Pilot 20 Feet et of Runway	From Runway Edge)	_	
200 400	16	3 32	46 47	313 53	1 0	10	
600	(Convair)	2 07 1 4 5	64 60 72 43	295 40 287 57	10	1 0 1 0	
800	(00,	1 17	76 62	283 38	1 10	10	
1000		0 9	79 25	280 75	îŏ	î o	
200	20 8	4 32	46 47	313 53	1 0	1 0	
400		2 68	64 60	295 40	1 0	10	
600	(Constellation)	1 88	72 43	287 57	1.0	1 0	
800 1000		1 45 1 17	76 62 79 25	283 38 280 75	1 0 1 0	1 0 1 0	
	-	Aircraft Posit Requirement		20 Feet Fro 500 Feet of R	m Runway Edge unway		
100	12 5	3 33	27 77	332 23	1 0	1 0	
300 500	(Convair)	2 02 1 33	57 67 69 20	302 33 290 80	1 0 1 0	1 0 1 0	
100	16 2	4 32	27 77	33 23	1 0	10	
300 5 00	(Constellation)	2 60 1 73	57 6 7	302 33	1 0	10	
500	1	1 / 1	69 20	290 80	10	10	

TABLE IVb

MINIMUM CANDLEPOWER REQUIREMENTS OF RUNWAY LIGHTS FOR NIGHT AND DAY OPERATIONS UNDER ILS MINIMUMS

Aircraft Position Over Middle Marker (3500 From Runway End)
To See 1000 Feet of Runway

													
		Vertical Angl	e (Degr	rees)									
Distance	On	Abo	ve	Belo	w		Hor	ızontal	Angle			Candlepov	ver
Threshold to	Glide Pa			Glide F						77		1/2-Mile V	
Pair of Lights	Altitud			Altıtu		I	Runway			ay Side	Т:	= 0 5201	T = 0.612
(Feet)	(200 Fe	et) (500 F	eet)	(100 F	eet)		(Degre	es}	(Deg	(rees)		Night	Day
A On Cou	ırse												
200	3 1	7 1	Í	1 5		8	18 3	271 7				360	62500
400	2.9	7 3		1.5				271 6	1			660	100000
600	2.8	6 9)	14				271 5				975	130000
800	2.7	6.6		1.3				271 5				1600	1,80000
1000	2.5	6.3	,	1 3			18 6	271 4	L			2000	300000
B 300 Fe	et Off Cou	rse								т			
200	3 1	7 7		15				276 Z	93 1	266 9		360	62500
400	2 9	7 3		1.5				275 9	92.9	267 1		660	100000
600 800	2 8	6 9		14				275 6	92.8	267 2		975	130000
1000	27	63		13 13				275 3 275 l	92.7 92.5	267 3 267 5		1600 2000	180000 300000
		<u> </u>		t Position					way End				
			Require						way End Runway				
Distance				Horizon	tal A					Can	dlep	ower	
Threshold to	l.,,	Vertical	n		۱ ـ ۱	Off	- 0. 1		2-Mile 0 5201	Visibility T = 0 61	<u>.</u>	$\frac{1/4 - \text{Mile}}{T = 0.189}$	
Pair of Lights (Feet)	Altitude (Feet)	Angle (Degrees)		ray Side grees)		nway Degr	/ Side ees)		ıght	1 = 0 61 Day	۱ ٔ	1 = 0 189 Night	1 = 0 378 Day
A On Glid	le Path an	d On Course						<u> </u>		<u> </u>			
200	84	4 0	84 8	275 Z					10	160	Т	10	950
400	"	3 4	85 5	274 5					ìo	280		46	2200
600		3 0	86 1	273 9	[1 3	500		150	5500
800		2 7	86 5	273 5	ĺ				2 3	800		520	12000
1000		2 4	86 B	273 Z					40	1500		2200	29000
B Above (Glide Path	On Course											
200	175	8.3	84 8	275 2			-		1 0	160	Ī	11	950
400	1,5	7 1	85 5	274 5					10	290		50	2300
600		6.2	86 1	273 9			1		1 3	500		160	5500
800	1 1	5 6	86 5	273 5					2 3	800		550	12000
1000		5 0	86 8	273 2					40	1500		2200	29000
C At Glide	e Path Le	vel — 150 Feet	Off Co	urse									
200	84	40	80 5	279 5					1 0	160		12	980
400		3 4	819	278 1					10	295		53	2300
600		3 0	A2 9	277 1					13	500	- 1	170	5500
600 1000		2 6 2 4	93 7 94 3	276 3 275 7					2 3 4 0	840 1500	-	575 2300	12200 30000
					<u> </u>		7/5/		1 0		\dashv		
200		40 34				24 20	267 6 268 0		10	150 275		11 45	940 2250
400 600		3 0				18	268 Z		13	495		158	5500
800		2 7				16	268 4		2 3	800		575	12000
1000		z 4				1 4	268 6	L	4 0	1500		2200	29000
D Above (Glide Path	150 Feet O	f Cour	se					-				
200	175	8 2	80 5	279 5					10	170		13	1000
400	`'	7 D	81 9	2 79 1					10	298	- }	55	2500
600		6 2	82 9	277 1					1 3	500		170	5500
800		5 5	83 7	276 3					2 3	940		585	12200
1000		5 0	84 3	275 7					4 0	1500	\perp	2300	30000
200		8 3				2 4	267 6		1 0	160		12	975
400		7 1				20	268 0		10	293	- 1	50	2300
600 800		6 2 5 5				1 B 1 6	268 Z 268 4		1 3 2 3	500 820		170 575	5500 12100
1000		5 D] 4	268 6		40	1500		2300	30000

.

TABLE IVb (Continued)

MINIMUM CANDLEPOWER REQUIREMENTS OF RUNWAY LIGHTS FOR NIGHT AND DAY OPERATIONS UNDER ILS MINIMUMS

			raft Position	At 500 Foot To See 1000	Portal Feet of Runway	f		
Distance Threshold to Pair of Lights	Altitude	Vertical Angle	Runway Side	ntal Angle Off Runway Sign	T = 0.5201		1/4-Mile T = 0 189	Visibility T = 0.378
(Feet)	(Feet)	(Degrees)	(Degrees)	(Degrees) Night	Day	Night	Day
200 400 600 800 1000	60	4 0 3 0 3 1 2 6 2 3	81 1 278 9 83 0 277 0 84 3 275 7 85 2 274 8 85 8 274 2		1 0 1 0 1 0 1 0	23 54 100 199 370	1 0 1 5 5 0 25 0 100 0	65 200 500 1300 3600
B Above Glide	Path On C	ourse	-		-	<u> </u>	<u> </u>	•
200 400 600 800 1000	125	10 0 7 9 6 5 5 5 4 8	81 1 278 9 83 0 277 0 84 3 275 7 85 2 274 6 85 8 274 2		1 0 1 0 1 0 1 0 1 0	25 58 120 220 400	1 0 1 5 6 0 25 0 100 0	70 205 530 1400 3800
C At Glide Pa	th Level -	125 Feet Off	Course	<u> </u>		-		
200 400 600 800 1000 200 400 600 800	60	4 7 3 7 3 0 2 6 2 3 4 9 3 8 3 1 2 6 2 3	71 4 288 6 75 4 284 6 78 0 262 0 79 8 260 2 81 1 278 9	91 2 268 91 0 269 90 8 269 90 7 269 90 6 269	0 1 0 2 1 0 3 1 0	27 56 120 220 385 23 52 100 200 380	1 0 2 0 7 0 27 0 102 0 1 0 1 5 6 0 25 0	80 230 600 1500 3750 67 200 500 1350 3650
D Above Glide	Path = 12	5 Feet Off Co	ourse	<u> </u>				
200 400 600 800 1000 200 430 600 800 1000	125	9 6 7 6 6 3 5 4 4 6 10 1 7 9 6 5 5 5 4 8	71 4 288 6 75 4 284 6 78 0 282 0 79 8 280 2 81 1 278 9		0 1 0 2 1 0 3 1 0	28 60 125 225 420 24 53 110 205 390	1 0 2 0 7 0 25 0 110 0 1 5 6 0 25 0	86 235 620 1560 4200 70 210 510 1400 3900
		raft Position uirement		vn Point - 20 Feet of Runw	Feet From Hun ay	way Edge		
200 400 600 800 1000	On Runway	3 32 2 07 1 45 1 17 0 9	46 47 313 5 64 6 295 6 72 43 287 5 76 62 283 3 79 25 280 7	7 8	1 0 1 0 1 0 1 0 1 0	2 6 17 37 85	I 0 I 0 I 0 I 0 3 5	3 13 42 125 380
200 400 600 800 1000		4 32 2 68 1 88 1 45 1 17	46 47 313 5 64 6 295 4 72 43 287 5 76 62 283 3 79 25 280 7	7 8	1 0 1 0 1 0 1 0 1 0	2 6 17 37 85	I 0 I 0 I 0 I 0 I 5	3 13 42 125 380
				Faxiing 20 Fe Fo See 500 Fe	et From Runwa et of Runway	ay Edge		
100 300 500		3 33 2 02 1 33	27 77 332 2 57 67 302 3 69 2 290 8	3 3	1 0 1 0 1 0	1 5 3 5 11 0	1 0 1 0 1 0	1 5 6 0 24 0
100 300 500		4 32 2 6 1 73	27 77 332 2 57 67 302 3 89 2 299 8	3	1 0 1 0 1 0	1 5 3 5 11 0	1 0 1 0 1 0	1 5 6 0 24 0